Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling.
نویسندگان
چکیده
Wnt and Dickkopf (Dkk) regulate the stabilization of beta-catenin antagonistically in the Wnt signaling pathway; however, the molecular mechanism is not clear. In this study, we found that Wnt3a acts in parallel to induce the caveolin-dependent internalization of low-density-lipoprotein receptor-related protein 6 (LRP6), as well as the phosphorylation of LRP6 and the recruitment of Axin to LRP6 on the cell surface membrane. The phosphorylation and internalization of LRP6 occurred independently of one another, and both were necessary for the accumulation of beta-catenin. In contrast, Dkk1, which inhibits Wnt3a-dependent stabilization of beta-catenin, induced the internalization of LRP6 with clathrin. Knockdown of clathrin suppressed the Dkk1-dependent inhibition of the Wnt3a response. Furthermore, Dkk1 reduced the distribution of LRP6 in the lipid raft fraction where caveolin is associated. These results indicate that Wnt3a and Dkk1 shunt LRP6 to distinct internalization pathways in order to activate and inhibit the beta-catenin signaling, respectively.
منابع مشابه
Wnt5a regulates distinct signalling pathways by binding to Frizzled2.
Wnt5a regulates multiple intracellular signalling cascades, but how Wnt5a determines the specificity of these pathways is not well understood. This study examined whether the internalization of Wnt receptors affects the ability of Wnt5a to regulate its signalling pathways. Wnt5a activated Rac in the beta-catenin-independent pathway, and Frizzled2 (Fz2) and Ror1 or Ror2 were required for this ac...
متن کاملLRP6 is internalized by Dkk1 to suppress its phosphorylation in the lipid raft and is recycled for reuse.
Beta-catenin-mediated Wnt signaling is crucial in animal development and tumor progression. The phosphorylation of low-density lipoprotein receptor-related protein 6 (LRP6), a single-span transmembrane Wnt receptor, plays a vital role in this signaling. Dickkopf1 (Dkk1) has been shown to inhibit the Wnt-beta-catenin pathway, but the mechanism is not yet clear. Here, evidence is presented that W...
متن کاملActivation and Inhibition of The Wnt3A Signaling Pathway in Buffalo (Bubalus bubalis) Embryonic Stem Cells: Effects of WNT3A, Bio and Dkk1
Background This research studies the effects of activation and inhibition of Wnt3A signaling pathway in buffalo (Bubalus bubalis) embryonic stem (ES) cell-like cells. MaterialsAndMethods To carry on this experimental study, the effects of activation and inhibition of Wnt3A signaling in buffalo ES cell-like cells were examined using Bio (0.5 mM) combined with WNT3A (200 ng/ml), as an activator, ...
متن کاملActivation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملR-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6.
The R-Spondin (RSpo) family of secreted proteins act as potent activators of the Wnt/beta-catenin signaling pathway. We have previously shown that RSpo proteins can induce proliferative effects on the gastrointestinal epithelium in mice. Here we provide a mechanism whereby RSpo1 regulates cellular responsiveness to Wnt ligands by modulating the cell-surface levels of the coreceptor LRP6. We sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental cell
دوره 15 1 شماره
صفحات -
تاریخ انتشار 2008